NORTHEAST STEM STARTER ACADEMY (NSSA) AT MOUNT VERNON www.mvtsc.org

PROGRAMMATIC OFFERINGS

Dr. Satish Jagnandan - Director of Educational Services Copyright © - All Rights Reserved.

ATTRIBUTES OF AN EXEMPLARY STEM (SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS) PROGRAM

1. The standards-based STEM program must ensure equity and excellence for all students.
2. It is essential that the STEM program focus on understanding important relationships, processes, mechanisms, and applications of concepts that connect science, technology, engineering and mathematics.
3. The STEM program must emphasize a hands-on and minds-on approach to learning. Experiences must provide students with opportunities to interact with the natural world in order to construct explanations about their world.
4. The STEM program must emphasize the skills necessary to allow students to construct and test their proposed explanations of natural phenomena by using the conventional techniques and procedures of scientists.
5. The STEM program must provide students with the opportunity to dialog and debate current scientific issues related to the course of study.
6. The STEM program must provide opportunities for students to make connections between their prior knowledge and past experiences to the new information being taught. Student learning needs to be built upon prior knowledge.
7. The STEM program must incorporate laboratory investigations that allow students to use scientific inquiry to develop explanations of natural phenomena. These skills must include, but are not limited to, interpreting, analyzing, evaluating, synthesizing, applying, and creating as learners actively construct their understanding.
8. The STEM program must assess students' ability to explain, analyze, and interpret scientific processes and their phenomena and the student performance data generated by theses assessments must be used to focus instructional strategies to meet the needs of all students.
9. The STEM program must be responsive to the demands of the $21^{\text {st }}$ century by providing learning opportunities for students to apply the knowledge and thinking skills of mathematics, science and technology to address real-life problems and make informed decisions.

Northeast STEM Starter Academy (NSSA) at Mount Vernon

MODEL OF INSTRUCTION

The most important learning goal is for students to learn to think about problems and try a variety of approaches to solve them. Currently, most students just wait for the teacher to state the answer. The aim is for students to enjoy figuring out what's going on and to be creative and innovative. Through the implementation of the 5Es instructional model and inquiry based tools and instructional strategies, students will

- think about problems from various angles and try different strategies;
- demonstrate process skills, working logically and consistently;
- collaborate with others to solve problems;
- use the language of STEM;
- reflect on the thinking processes that helped them to acquire new knowledge and skills in STEM; and
- view STEM as interesting and fun.

Phase	Summary
Engagement	The teacher or a curriculum task accesses the learners' prior knowledge and helps them become engaged in a new concept through the use of short activities that promote curiosity and elicit prior knowledge. The activity should make connections between past and present learning experiences, expose prior conceptions, and organize students' thinking toward the learning outcomes of current activities.
Exploration	Exploration experiences provide students with a common base of activities within which current concepts (i.e., misconceptions), processes, and skills are identified and conceptual change is facilitated. Learners may complete lab activities that help them use prior knowledge to generate new ideas, explore questions and possibilities, and design and conduct a preliminary investigation.
Explanation	The explanation phase focuses students' attention on a particular aspect of their engagement and exploration experiences and provides opportunities to demonstrate their conceptual understanding, process skills, or behaviors. This phase also provides opportunities for teachers to directly introduce a concept, process, or skill. Learners explain their understanding of the concept. An explanation from the teacher or the curriculum may guide them toward a deeper understanding, which is a critical part of this phase.
Elaboration	Teachers challenge and extend students' conceptual understanding and skills. Through new experiences, the students develop deeper and broader understanding, more information, and adequate skills. Students apply their understanding of the concept by conducting additional activities.
Evaluation	The evaluation phase encourages students to assess their understanding and abilities and provides opportunities for teachers to evaluate student progress toward achieving the educational objectives.

Northeast STEM Starter Academy (NSSA) at Mount Vernon

COURSE SEQUENCE (K-6)

The NSSA's STEM Curriculum provides students with a base foundation in Algebra 2, Chemistry and Physics.

Northeast STEM Starter Academy (NSSA) at Mount Vernon

COURSE SEQUENCE (7-12)

The NSSA's STEM Curriculum provides students with a base foundation in Algebra 2, Chemistry and Physics.

STEM MAJORS IN AN INSTITUTION OF HIGHER EDUCATION!!!

Northeast STEM Starter Academy (NSSA) at Mount Vernon

COURSE NUMBERS

COURSE	COURSE NUMBER
STEM K	NSSAK
STEM 1	NSSA1
STEM 2	NSSA2
STEM 3	NSSA3
STEM 4	NSSA54
STEM 5	NSSA6
STEM 6	NSSA7
STEM 7	NSSA8
STEM 8	NSSA9
STEM 9	NSSA10
STEM 10	NSSA11
STEM 11	NSSA12
STEM 12	

Northeast STEM Starter Academy (NSSA) at Mount Vernon

COURSE CATOLOG

COURSE	COURSE NUMBER
STEM K	NSSAK
SCIENCE	PS2.A: Forces and Motion - Pushes and pulls can have different strengths and directions. (KPS2-1),(K-PS2-2) - Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. (K-PS2-1),(K-PS2-2) PS2.B: Types of Interactions - When objects touch or collide, they push on one another and can change motion. (K-PS2-1) PS3.C: Relationship Between Energy and Forces - A bigger push or pull makes things speed up or slow down more quickly. (secondary to K-PS2-1) PS3.B: Conservation of Energy and Energy Transfer - Sunlight warms Earth's surface. (K-PS3-1),(K-PS3-2)
MATHEMATICS	Operations \& Algebraic Thinking 1.0A Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. 1 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 , e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. Understand and apply properties of operations and the relationship between addition and subtraction. 3. Apply properties of operations as strategies to add and subtract. 2 Examples: If $8+3=11$ is known, then 3 $+8=11$ is also known. (Commutative property of addition.) To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=12$. (Associative property of addition.) 4. Understand subtraction as an unknown-addend problem. For example, subtract $10-8$ by finding the number that makes 10 when added to 8 . Add and subtract within 20 . Add and subtract within 20.

5. Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

6 . Add and subtract within 20 , demonstrating fluency for addition and subtraction within 10 . Use strategies such as counting on; making ten (e.g., $8+6=8+2+4=10+4=14$); decomposing a number leading to a ten (e.g., $13-4=13-3-1=10-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+1=12+1=13$).

Work with addition and subtraction equations.

7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6=6,7=8-1,5+$ $2=2+5,4+1=5+2$.
8. Determine the unknown whole number in an addition or subtraction equation relating three whole numbers.

For example, determine the unknown number that makes the equation true in each of the equations $8+?=$ $11,5=-3,6+6=$.

Number \& Operations in Base Ten 1.NBT

Extend the counting sequence.

1. Count to 120 , starting at any number less than 120 . In this range, read and write numerals and represent a number of objects with a written numeral.

Understand place value.

2. Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:
a. 10 can be thought of as a bundle of ten ones - called a "ten."
b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.
c. The numbers $10,20,30,40,50,60,70,80,90$ refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).
3. Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, $=$, and <.
Use place value understanding and properties of operations to add and subtract.
4. Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a

	written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. 5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used		
	ETS1.A: Defining and Delimiting Engineering Problems - A situation that people want to change or create can be approached as a problem to be solved through engineering. (K-2-ETS1-1) - Asking questions, making observations, and gathering information are helpful in thinking about problems. (K-2-ETS1-1) - Before beginning to design a solution, it is important to clearly understand the problem. (K-2-ETS1-1) ETS1.B: Developing Possible Solutions - Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem's solutions to other people. (K-2-ETS1-2) ETS1.C: Optimizing the Design Solution - Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (K-2-ETS1-3)		
Prerequisite	Application	Type of Examination	Program
Course Type	Core	Frequency	10 sessions (40 hours)

```
Dr. Satish Jagnandan - Director of Educational Services
    Copyright © - All Rights Reserved.
```

COURSE	COURSE NUMBER
STEM 1	NSSA1
SCIENCE	PS4.A: Wave Properties - Sound can make matter vibrate, and vibrating matter can make sound. (1-PS4-1) PS4.B: Electromagnetic Radiation - Objects can be seen if light is available to illuminate them or if they give off their own light. (1-PS4-2) - Some materials allow light to pass through them, others allow only some light through and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach. Mirrors can be used to redirect a light beam. (Boundary: The idea that light travels from place to place is developed through experiences with light sources, mirrors, and shadows, but no attempt is made to discuss the speed of light.) (1-PS4-3) PS4.C: Information Technologies and Instrumentation - People also use a variety of devices to communicate (send and receive information) over long distances. (1-PS4-4)
MATHEMATICS	Operations \& Algebraic Thinking 2.0A Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. 1 Add and subtract within 20. 2. Fluently add and subtract within 20 using mental strategies. 2 By end of Grade 2, know from memory all sums of two one-digit numbers. Work with equal groups of objects to gain foundations for multiplication. 3. Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends. 4. Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends. Number \& Operations in Base Ten 2.NBT Understand place value. 1. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a. 100 can be thought of as a bundle of ten tens - called a "hundred."

	b. The numbers $100,200,300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 2. Count within 1000 ; skip-count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s . 3. Read and write numbers to 1000 using base-ten numerals, number names, and expanded form. 4. Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, $=$, and < symbols to record the results of comparisons. Use place value understanding and properties of operations to add and subtract. 5. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 6. Add up to four two-digit numbers using strategies based on place value and properties of operations. 7. Add and subtract within 1000 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds. 8. Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900. 9. Explain why addition and subtraction strategies work, using place value and the properties of operations. 1		
	ETS1.A: Defining and Delimiting Engineering Problems - A situation that people want to change or create can be approached as a problem to be solved through engineering. (K-2-ETS1-1) - Asking questions, making observations, and gathering information are helpful in thinking about problems. (K-2-ETS1-1) - Before beginning to design a solution, it is important to clearly understand the problem. (K-2-ETS1-1) ETS1.B: Developing Possible Solutions - Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem's solutions to other people. (K-2-ETS1-2) ETS1.C: Optimizing the Design Solution - Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (K-2-ETS1-3)		
Prerequisite	STEM K	Type of Examination	Program
Course Type	Core	Frequency	10 sessions (40 ho

```
Dr. Satish Jagnandan - Director of Educational Services
    Copyright © - All Rights Reserved.
```

\left.	COURSE	COURSE NUMBER
STEM 2	NSSA2	$\right]$

	Multiply and divide within 100. 7. Fluently multiply and divide within 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. Solve problems involving the four operations, and identify and explain patterns in arithmetic. 8. Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. 3 9. Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.		
ENGINEERING AND TECHNOLOGY	ETS1.A: Defining and Delimiting Engineering Problems - A situation that people want to change or create can be approached as a problem to be solved through engineering. (K-2-ETS $1-1$) - Asking questions, making observations, and gathering information are helpful in thinking about problems. (K-2-ETS1-1) - Before beginning to design a solution, it is important to clearly understand the problem. (K-2-ETS1-1) ETS1.B: Developing Possible Solutions - Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem's solutions to other people. (K-2-ETS1-2) ETS1.C: Optimizing the Design Solution - Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (K-2-ETS1-3)		
Prerequisite	STEM 1	Type of Examination	Program
Course Type	Core	Frequency	10 sessions (40 hours)

| COURSE | COURSE NUMBER |
| :---: | :---: | :---: |
| STEM 3 | NSSA3 |

	b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=8 / 8+8 / 8+1 / 8$. c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction. d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem. 4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. a. Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$. b. Understand a multiple of a / b as a multiple of $1 / \mathrm{b}$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as 6/5. (In general, $n \times(a / b)=(n \times a) / b$.)		
	ETS1.A: Defining and Delimiting Engineering Problems - Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3-5-ETS1-1) ETS1.B: Developing Possible Solutions - Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1-2) - At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS 1-2) - Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-5-ETS1-3) ETS1.C: Optimizing the Design Solution - Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS1-3)		
Prerequisite	STEM 2	Type of Examination	Program
Course Type	Core	Frequency	10 sessions (40 hours)

COURSE	COURSE NUMBER
STEM 4	NSSA4
SCIENCE	PS3.A: Definitions of Energy - The faster a given object is moving, the more energy it possesses. (4-PS3-1) - Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-2),(4-PS3-3) PS3.B: Conservation of Energy and Energy Transfer - Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-2),(4-PS3-3) - Light also transfers energy from place to place. (4-PS3-2) - Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2),(4-PS3-4) PS3.C: Relationship Between Energy and Forces - When objects collide, the contact forces transfer energy so as to change the objects' motions. (4-PS33) PS3.D: Energy in Chemical Processes and Everyday Life - The expression "produce energy" typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4) PS4.A: Wave Properties - Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K-2.) (4-PS4-1) - Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). (4-PS4-1) PS4.B: Electromagnetic Radiation - An object can be seen when light reflected from its surface enters the eyes. (4-PS4-2) PS4.C: Information Technologies and Instrumentation

- Digitized information can be transmitted over long distances without significant degradation. Hightech devices, such as computers or cell phones, can receive and decode information-convert it from digitized form to voice-and vice versa. (4-PS4-3)

MATHEMATICS Number \& Operations-Fractions 5.NF Use equivalent fractions as a strategy to add and subtract fractions.

1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=(a d+b c) / b d$.) 2. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$.

Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

3. Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4, noting that $3 / 4$ multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?
4. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show (2/3) $\times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(a / b) \times(c / d)=a c / b d$.) b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. 5. Interpret multiplication as scaling (resizing), by:
a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .

	6. Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. 7. Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. 1 a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$. b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$. c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3cup servings are in 2 cups of raisins?		
	ETS1.A: Defining and Delimiting Engineering Problems - Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3-5-ETS1-1) ETS1.B: Developing Possible Solutions - Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1-2) - At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS 1-2) - Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-5-ETS1-3) ETS1.C: Optimizing the Design Solution - Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS 1-3)		
Prerequisite	STEM 3	Type of Examinatio	Program
	Core		

```
Dr. Satish Jagnandan - Director of Educational Services
    Copyright © - All Rights Reserved.
```

COURSE	COURSE NUMBER
STEM 5	NSSA5
SCIENCE	PS1.A: Structure and Properties of Matter - Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. (5-PS1-1) - The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. (5-PS1-2) - Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3) PS1.B: Chemical Reactions - When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4) - No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) (5-PS1-2) PS2.B: Types of Interactions - The gravitational force of Earth acting on an object near Earth's surface pulls that object toward the planet's center. (5-PS2-1) PS3.D: Energy in Chemical Processes and Everyday Life - The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). (5-PS3-1) LS1.C: Organization for Matter and Energy Flow in Organisms - Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)
MATHEMATICS	Ratios \& Proportional Relationships - 6.RP Understand ratio concepts and use ratio reasoning to solve problems. 1. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."

	2. Understand the concept of a unit rate a / b associated with a ratio $\mathrm{a}: \mathrm{b}$ with $\mathrm{b} \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." 3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent. d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.		
	ETS1.A: Defining and Delimiting Engineering Problems - Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3-5-ETS1-1) ETS1.B: Developing Possible Solutions - Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1-2) - At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS1-2) - Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-5-ETS1-3) ETS1.C: Optimizing the Design Solution - Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS 1-3)		
Prerequisite	STEM 4	Type of Examina	Program
Course Type	Core	Frequenc	10 sessions (70 h

COURSE	COURSE NUMBER
STEM 6	NSSA 6
SCIENCE	PS1.A: Structure and Properties of Matter - Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS-PS1-1) - Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-2),(MS-PS1-3) - Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. (MS-PS1-4) - In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4) - Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1) - The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. (MS-PS1-4) PS1.B: Chemical Reactions - Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-2),(MS-PS1-3),(MS-PS1-5) - The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-5) - Some chemical reactions release energy, others store energy. (MS-PS1-6) PS3.A: Definitions of Energy - The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MSPS1-4) - The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy

(sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary to MS-PS1-4)

MATHEMATICS

RATIOS \& PROPORTIONAL RELATIONSHIPS - 7.RP

Analyze proportional relationships and use them to solve real-world and mathematical problems.

1. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction ${ }^{1 / 2} / 1 / 4$ miles per hour, equivalently 2 miles per hour.
2. Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
c. Represent proportional relationships by equations. For example, if total cost tis proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
3. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.

EXPRESSIONS \& EQUATIONS - 7.EE

Use properties of operations to generate equivalent expressions.

1. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
2. Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05."

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$.

	If you want to place a towel bar 9 3/4 inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation. 4. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width? b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.		
	- MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. - MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. - MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. - MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. Activities - Aqua-Robots - Rockets - Roller Coasters - Game Programming		
Prerequisite	STEM 5	Type of Examination	Program
Course Type	Core	Frequency	PD/WK - 2 hours

COURSE	COURSE NUMBER
STEM 7	NSSA7
SCIENCE	PS2.A: Forces and Motion - For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton's third law). (MS-PS2-1) - The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion. (MS-PS2-2) - All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared. (MSPS2-2) PS2.B: Types of Interactions - Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects. (MS-PS2-3) - Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass-e.g., Earth and the sun. (MS-PS2-4) - Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields that extend through space and can be mapped by their effect on a test object (a charged object, or a ball, respectively). (MS-PS2-5)
MATHEMATICS	Expressions \& Equations 8.EE Work with radicals and integer exponents. 1. Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3-^{3}=1 / 33=1 / 27$. 2. Use square root and cube root symbols to represent solutions to equations of the form $x 2=p$ and $x 3=\mathrm{p}$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational. 3. Use numbers expressed in the form of a single digit times a whole-number power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the

population of the United States as 3 times 108 and the population of the world as 7 times 109, and determine that the world population is more than 20 times larger.
4. Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.

Understand the connections between proportional relationships, lines, and linear equations.

5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distancetime equation to determine which of two moving objects has greater speed.
6. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $\mathrm{y}=\mathrm{mx}$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

Analyze and solve linear equations and pairs of simultaneous linear equations.

7. Solve linear equations in one variable.
a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).
b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
8. Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Functions 8.F

Define, evaluate, and compare functions.

1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. 1

	2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change. 3. Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s 2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line. Use functions to model relationships between quantities. 4. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. 5. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	
ENGINEERING AND TECHNOLOGY ACTIVITIES	- MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. - MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. - MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. - MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. Activities - Aqua-Robots - Rockets - Roller Coasters - Game Programming	
Prerequisite	STEM 6	Program
Course Type	Core	10 sessions (70 hours)

COURSE	COURSE NUMBER
STEM 8	NSSA8
SCIENCE	PS3.A: Definitions of Energy - Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed. (MS-PS3-1) - A system of objects may also contain stored (potential) energy, depending on their relative positions. (MS-PS3-2) - Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (MS-PS3-3),(MS-PS3-4) PS3.B: Conservation of Energy and Energy Transfer - When the motion energy of an object changes, there is inevitably some other change in energy at the same time. (MS-PS3-5) - The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment. (MS-PS3-4) - Energy is spontaneously transferred out of hotter regions or objects and into colder ones. (MS-PS3-3) PS3.C: Relationship Between Energy and Forces - When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. (MS-PS3-2)
MATHEMATICS	Creating Equations A-CED Create equations that describe numbers or relationships. 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. 3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. 4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.

Reasoning with Equations \& Inequalities A-REI

Understand solving equations as a process of reasoning and explain the reasoning.

1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Solve equations and inequalities in one variable.

3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
4. Solve quadratic equations in one variable.
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.
b. Solve quadratic equations by inspection (e.g., for $x 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.

Solve systems of equations.

5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.
8. (+) Represent a system of linear equations as a single matrix equation in a vector variable.
9. (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).

Represent and solve equations and inequalities graphically.

10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
11. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

	12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.		
ENGINEERING AND TECHNOLOGY ACTIVITIES	- MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. - MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. - MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. - MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. Activities - Aqua-Robots - Rockets - Roller Coasters - Game Programming		
Prerequisite	STEM 7	Type of Examination	Program
Course Type	Core	Frequ	sions (70 h

COURSE	COURSE NUMBER
STEM 9	NSSA9
SCIENCE	PS1.A Structure of matter (includes PS1.C Nuclear processes) - The sub-atomic structural model and interactions between electric charges at the atomic scale can be used to explain the structure and interactions of matter, including chemical reactions and nuclear processes. Repeating patterns of the periodic table reflect patterns of outer electrons. A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy to take the molecule apart. PS1.B Chemical reactions - Chemical processes are understood in terms of collisions of molecules, rearrangement of atoms, and changes in energy as determined by properties of elements involved.
MATHEMATICS	Interpreting Functions F-IF Understand the concept of a function and use function notation. 1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$. 2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for n ≥ 1. Interpret functions that arise in applications in terms of the context. 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity._ 5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function._ 6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph._ Analyze functions using different representations.

	7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases._ a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. 8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $\mathrm{y}=(1.02) \mathrm{t}, \mathrm{y}=(0.97) \mathrm{t}, \mathrm{y}=(1.01) 12 \mathrm{t}, \mathrm{y}=(1.2) \mathrm{t} / 10$, and classify them as representing exponential growth or decay. 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.		
	- HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. - HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. - HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. - HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex realworld problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.		
Prerequisite	STEM 8	Type of Examinatio	Program
Course Type	Core	Frequency	10 sessions (70 hours)

COURSE	COURSE NUMBER
STEM 10	NSSA10
SCIENCE	PS2.A Forces and motion - Newton's 2nd law ($\mathrm{F}=\mathrm{ma}$) and the conservation of momentum can be used to predict changes in the motion of macroscopic objects. PS2.B Types of interactions - Forces at a distance are explained by fields that can transfer energy and can be described in terms of the arrangement and properties of the interacting objects and the distance between them. These forces can be used to describe the relationship between electrical and magnetic fields.
MATHEMATICS	Build a function that models a relationship between two quantities. 1. Write a function that describes a relationship between two quantities._ a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. c. (+) Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time. 2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms._ Build new functions from existing functions. 3. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. 4. Find inverse functions. a. Solve an equation of the form $\mathrm{f}(\mathrm{x})=\mathrm{c}$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x 3$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$. b. (+) Verify by composition that one function is the inverse of another. c. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse. d. (+) Produce an invertible function from a non-invertible function by restricting the domain.

	5. (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.		
$\begin{aligned} & \text { ENGINEERING } \\ & \text { AND } \\ & \text { TECHNOLOGY } \end{aligned}$	- HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. - HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. - HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. - HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex realworld problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.		
Prerequisite	STEM 9	Type of Examination	Program
Course Type	Core	Frequency	10 sessions (70 hours)

| COURSE | COURSE NUMBER |
| :---: | :--- | :--- |
| STEM 11 | NSSA11 | \left\lvert\, \(\left.\begin{array}{l}PS3.A Definitions of energy

PS3.B Conservation of energy and energy transfer

- The total energy within a system is conserved. Energy transfer within and between systems can be

described and predicted in terms of energy associated with the motion or configuration of particles

(objects).

- Systems move toward stable states.

PS3.C Relationship between energy and forces

- Fields contain energy that depends on the arrangement of the objects in the field.

PS3.D Energy in chemical processes and everyday life

- Photosynthesis is the primary biological means of capturing radiation from the sun; energy cannot be

destroyed, it can be converted to less useful forms.\end{array}\right.\right\}\)

	9. (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems. Linear, Quadratic, \& Exponential Models F-LE Construct and compare linear, quadratic, and exponential models and solve problems. 1. Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). 3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. 4. For exponential models, express as a logarithm the solution to $a b c t=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology. Interpret expressions for functions in terms of the situation they model. 5. Interpret the parameters in a linear or exponential function in terms of a context.		
ENGINEERING AND TECHNOLOGY ACTIVITIES	- HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. - HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. - HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. - HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex realworld problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.		
Prerequisite	STEM 10	Type of Examination	Program
Course Type	Core	Frequenc	10 sessions (70 h

| COURSE | COURSE NUMBER |
| :---: | :---: | :---: |
| STEM 12 | NSSA12 |
| SCIENCE | $\begin{array}{c}\text { PS4. A Wave properties } \\ \text { - The wavelength and frequency of a wave are related to one another by the speed of the wave, which } \\ \text { depends on the type of wave and the medium through which it is passing. Waves can be used to } \\ \text { transmit information and energy. }\end{array}$ |
| PS4.B Electromagnetic radiation | |
| Both an electromagnetic wave model and a photon model explain features of electromagnetic radiation | |
| broadly and describe common applications of electromagnetic radiation. | |
| PSS4.C Information technologies and instrumentation | |
| $\bullet \quad$ Large amounts of information can be stored and shipped around as a result of being digitized. | |$\}$

ENGINEERING	\bulletHS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and AND constraints for solutions that account for societal needs and wants.		
TECHNOLOGY	-HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.		
ACTIVITIES	-HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade- offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real- world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.		
Prerequisite	STEM 11	Type of Examination	Program
Course Type	Core	Frequency	10 sessions (70 hours)

